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Synopsis 

A dispersion force based interaction between the solvent and the beads of a bead-spring model 
macromolecule is used to couple the motion of the solvent and polymer in dilute solution flows. 
The polymer exerts a force on the solvent equal and opposite to the force that the solvent exerts 
on it. The friction coefficient approximation of the Rouse-Zimm theories is eliminated. Both the 
solvent and polymer are subject to ensemble averaging over their respective phase space. A con- 
stitutive equation for the polymer stress is presented. By appropriate selection of the interaction 
potential between the solvent and the polymer, any normal stress difference can be predicted. 

INTRODUCTION 

Bead-spring model macromolecules, both free-draining and non-free-drain- 
ing,’ are often used to predict the rheological behavior of dilute polymer so- 
lutions. The analysis using these models requires knowledge of the flow field 
acting on the bead-spring assemblies. However, the flow field is part of the 
information sought when using these models. Problems in which knowledge of 
the solution is needed to solve the problem often lead to iterative solution 
techniques in which the answer is guessed and used as an input to produce a 
(hopefully) improved estimate. In our case, this procedure requires that the 
velocity field be computed using the polymer stress field and vice versa until a 
self-consistent velocity field is ~bta ined .~  Although this is purely a mathematical 
technique, and should be independent of the equations being solved, it has 
drawn attention to the fact that both the free-draining and the non-free-draining 
models possess no mechanism by which the solvent can feel the polymer 
stress field. 

Lodge4 has pointed to the consequences of using such models to compute 
the free recovery of a liquid after it has undergone a specified flow history. He 
has indicated that the models may be useful as “stress calculators,” but should 
not be considered to yield constitutive equations. Lodge has suggested a reex- 
amination of these mean field models in an effort to retain a mechanism by 
which the solvent can feel the polymer stress. This article presents one way of 
retaining such a mechanism. 

Kinetic theory models of polymer solutions that do not neglect the force of 
the beads of the macromolecular model on the solvent do exist. These are the 
most general models in which both the solvent and the polymer are not treated 
as a continuum but are both subject to ensemble averaging. These phase space 
kinetic theories are exhaustively presented in Bird et al.5 Unfortunately, such 
theories are intractable without the adoption of several assumptions. It is these 
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assumptions that have reduced the general theories to those of Rouse and Zimm 
and have simultaneously removed any means by which the solvent can feel the 
polymer stress. 

The friction coefficient approximation, described in Bird et al., leads to the 
modeling of the hydrodynamic force of the solvent on a bead of the polymer 
chain as being proportional to the velocity of the bead relative to the bulk flow 
velocity. The solvent is thereby treated as a continuum with the basis for the 
friction coefficient being Stokes drag law. This assumption is crucial and 
paves the way for a host of others that then produce a tractable model. It is 
the friction coefficient approximation that requires modification if we are to 
retain a mechanism by which the solvent feels the polymer. 

Curtiss' has resurrected the time-smoothing statistical mechanics treatment 
of Kirkwood. In doing so he reconsiders the Stokes law type models and thereby 
modifies the expression for the hydrodynamic force that involves the pair con- 
figuration space distribution. However, the friction coefficient approximation 
is retained in his analysis. The effect of time smoothing does not modify the 
expressions involving the single-molecule distributions. We consider only single- 
molecule distributions. 

In the following analysis, we eliminate the friction coefficient approximation 
by considering the interaction between the solvent and the polymer to be the 
consequence of dispersion forces. The resulting complication is that we need 
to consider ensemble averages over the solvent as well as the polymer. The 
resulting benefit is that the polymer exerts a force equal and opposite to that 
which the solvent exerts on it. We consider a system composed of a single 
solvent molecule interacting with a single polymer molecule. The analysis ad- 
dresses the system with two conditional probability distributions. 

DEVELOPMENT 

The Solvent 

The solvent molecule is considered to be a featureless point mass whose 
state is described by the single-molecule phase space distribution f,. The con- 
servation of all phase points for the solvent is maintained by 

where rs is the position vector of the single solvent molecule under consideration, 
t is the time, and the superscript dots signify differentiation with respect to 
time. We have chosen to use Lagrangian rather than Hamiltonian phase space. 

The forces acting on the solvent molecule are identified by the force balance 

ar a~ 
m r  = - - - -  

dr, dr, s s  

where m, is the mass of a solvent molecule. The interaction potential r is a 
dispersion force based attraction and/or repulsion between the solvent and the 
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beads of the polymer chain. The r is assumed to be a function of the position 
of the solvent molecule under consideration and of the positions of all the beads 
within the polymer molecule under consideration. Most importantly, it is con- 
servative and, therefore, not a function of velocity coordinates. 

The potential E accounts for the interaction of the system with either long- 
or short-range external forces. An example of a long-range force is gravity. A 
solid boundary or wall interaction results in a short-range force. In the vicinity 
of a wall, the solvent molecules experience dispersion forces exerted by the 
atoms within the wall. We expect any modification of the solvent density or 
viscosity caused by the wall to exist within a boundary layer of a size several 
orders of magnitude smaller than that for the polymer. Therefore, the depen- 
dence of E on r, can usually be neglected. 

By modeling the solvent with a single-molecule distribution, we neglect the 
interaction between any one solvent molecule and all the others. We are in 
essence modeling the solvent as if it were an ideal gas. We accept this simpli- 
fication because we emphasize the interaction between the solvent and the 
polymer. By design, the solvent density and viscosity can be made pure constants 
with no attempt made to evaluate them from molecular properties. They remain 
free parameters to be specified by liquid values if the need arises. 

We define the peculiar velocity for the solvent, vs, as the velocity of the 
solvent molecule relative to the bulk flow velocity, 

v, = r, - u(r,) ( 3 )  

where u is the bulk (i.e., solution) velocity. We rearrange the force balance to 
obtain an expression for the acceleration of the solvent molecule. Using the 
expression for the molecule’s acceleration and peculiar velocity in the conser- 
vation equation for f s  yields 

where we have also used 

We assume that the peculiar velocity is a solenoidal field. This assumption 
is similar to, but less restrictive than, the “stosszahlanstaz” or the molecular 
chaos assumption of B ~ l t z m a n n . ~  If we assume the stosszahlanstaz instead, the 
peculiar velocity is then uncorrelated with position and consequently a sole- 
noidal field. The second assumption we make is that the flow is incompressible. 
Making use of these assumptions yields, 

( 5 )  
af, 1 a(r + E )  afs  au -l afs - _  a f s  - - ( v , + u ) . - + -  . - +  - 

at dr, ms ar, (avs ( ars) *G) 
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When we evaluate f ,  at a stationary state, to make certain that it is invariant 
with respect to a Galilean transformation, we must use the substantial deriv- 
ative. The substantial derivative for f ,  is 

Using the substantial derivative in eq. (5)  yields 

Equations ( 6 )  are the governing equations for f s .  We now simplify by averaging 
over the velocity space of the solvent molecule. 

We define the real space distribution for the solvent as 

where { r,} denotes the set of position vectors for the beads of the polymer 
chain. The semicolon preceding the braces indicates that this is parametric 
dependence. The integration is performed over Q, which signifies the volume 
of the velocity space for a single particle. 

To find the governing equation for g, ,  we integrate the governing equation 
for f ,  over Q. Averaging eq. (6b) over Q yields 

To complete the average over the entire phase space for the solvent, we define 
an operator for averaging over real space. We denote this operator with a pair 
of backward slashes and define it as 

where V designates the volume of real space for a single particle. 
The ensemble averages provide a means for evaluating a normalization con- 

stant for either f ,  or g, .  However, the parametric dependence of both f s  and g,  
on the bead positions means that any normalization constant will also have 
this dependence. The normalization will therefore require a joint solvent-poly- 
mer or total mass average. In the absence of polymer, the normalization con- 
straint is 

N,  = \ l \ ,  
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where N, is the total number of solvent molecules in the volume V. If we further 
restrict the analysis by neglecting any wall or external potential, then g, is a 
constant with the value 

Ns 
gs = - V 

Both f s  and g, are conditional probability distributions. The dependence of 
the interaction potential r on the positions of the beads within a polymer 
molecule makes the probability of finding a solvent molecule at a particular 
location conditional upon finding the beads at certain other specified locations. 
We model the polymer in the same manner as we have done for the solvent. 
As we shall show in the next section, the phase space distribution for the polymer 
will have a parametric dependence on the position of the solvent molecule. 

The Polymer 

The state of a single polymer molecule is described by the phase space dis- 
tribution f p .  We model the macromolecule as a linear assembly of a identical 
beads connected by a - 1 identical springs. The conservation of all phase points 
is maintained by the continuity equation for f,,, 

where r, is the position vector for the pth bead. 

bead, 
The forces acting on the beads are identified with the force balance on a 

where m, is the mass of a bead. The potential E, introduced in the presentation 
for the solvent, represents the interaction between the system and a wall or 
external potential. The sum of interactions of each bead with the wall yields 
the total interaction of the macromolecule with the wall; hence, 

The potential r, also introduced in the presentation for the solvent, is the 
sum of the interactions of the solvent with each bead: 
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The potential @ represents the total interaction of all the beads on the chain 
caused by each bead interacting with its nearest neighbors by means of the 
springs. All three potentials are conservative. 

We define the peculiar velocity for the pth bead as 

v, = r, - u ( r,) (13) 

We substitute the expression for the peculiar velocity and the acceleration of 
a bead into the continuity equation for f p  to yield 

where we have assumed incompressible flow and that the peculiar velocity for 
each bead is a solenoidal field. 

The substantial derivative for f p  is 

We use the substantial derivative for f p  in eq. (14) to find 

Equations (15) are the governing equations for f p .  We now simplify by averaging 
over the velocity space of all the beads. 

We define the polymer configuration space distribution in the same manner 
by which we defined the solvent real space distribution. The configuration space 
distribution is defined as 

To find the governing equation for gp, we integrate the governing equation for 
f, over Q for each bead. After integrating we find 

We cast eq. (16b) into a more useful form. We transform from the variables 
{ r,} , where p = 1, 2, 3, . . . , a, to the variables rc and { Qi} were i = 1, 2, 3, 
. . . , a - 1. The variable r, is the position vector for the center of mass of the 
bead-spring assembly. It is defined as 



BEAD-SPRING MACROMOLECULES 1729 

r, = 1 2 r, 
u=l 

The variables Qi are the spring vectors or internal coordinates of the macro- 
molecule. They are defined by 

where hi, is Kronecker's delta. The transformation from the r, to the Qi is 
expressed by the matrix Bi,; thus 

where 

Using this transformation, the gradients become 

du 1 du 
d r ,  a d r ,  
_ = - -  

Substituting the expressions for the gradients shown in eqs. ( 18) into eq. ( 16b) 
yields 

dgP - mp- - 
d t  

where we have used 

a 

2 Bj,, 1 0 
u = l  
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The matrix Aij is defined by 

This is the Rouse matrix. 
The average over the internal coordinates of the bead-spring assembly occurs 

far more often than the average over the entire configuration space. For this 
reason we define the operator 

\ \p = YI' J d3Qi 
i =  1 

Since the polymer cannot exist in solution without the solvent, any normal- 
ization constraint for the polymer must include an average over the solvent as 
well. We shall define such a joint solvent-polymer ensemble average in the 
next section. We use this ensemble average to define the intramolecular con- 
tribution to the stress tensor. 

The Stress Tensor 

The total stress in the fluid, T, is the sum of the solvent and polymer con- 
tributions. The solvent contribution is the familiar isotropic pressure plus the 
Newtonian deviatoric stress. The polymer contribution is the sum of an isotropic 
kinetic contribution, u(K)6  where 6 is the unit tensor, and the intramolecular 
contribution due to the tension in the springs, u . 

At first glance, it would appear that there should exist an explicit contribution 
to the total stress from the solvent-polymer intermolecular interaction. How- 
ever, such a contribution requires formulation with the pair distribution, f p s .  

Since the distributions fs and f p  are not statistically independent (i.e., they are 
conditional distributions, not marginal distributions ) , f p s  does not equal the 
product of f p  and fs. Although the intermolecular interaction cannot appear 
explicitly with this formulation, it does contribute to the total stress implicitly 
by the modification it causes in u. 

The total stress tensor is given by 

where P, is the solvent pressure and qs is the solvent viscosity. r is twice the 
rate of strain dyadic tensor; 

.=-+(z) . au au 
ar 

where the superscript T denotes the transpose. The kinetic contribution from 
the polymer is 
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where np is the polymer number density, k is Boltzmann's constant, and T is 
the absolute temperature. 

The intramolecular contribution from the polymer is the quantity of interest 
since in this formulation only it can predict non-Newtonian behavior. It is 
expressed by 

where R, is the position of bead p relative to the center of mass for the mac- 
romolecule; thus 

If we neglect all concentration gradients within the fluid, the expression for 
the intramolecular contribution to the stress tensor is greatly simplified. In 
this case the potential E must vanish since its effect is to create a concentration 
gradient. As a result of neglecting all concentration gradients, the fluid stress 
must be homogeneous even though it may be anisotropic. Then, the intramo- 
lecular contribution becomes 

From eqs. (24a) and (25) we see that the definition of the solvent-polymer 
ensemble average should be 

The normalization constraint for the solvent-polymer system is then 

where N p  is the number of polymer molecules in the solution. Written with the 
ensemble average symbols, eq. (25) becomes 

To evaluate u, we return to the governing equation for g,. If we neglect all 
concentration gradients, eq. (19) reduces to 

a-1 a-1 
dgp = CY 2 C Aij mpdt i = l  j = l  
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where we have dropped the subscript c on rc. In the absence of a concentration 
gradient, g, is constant and has the value given by eq. ( lob) .  The position rc 
therefore becomes indistinguishable from an arbitrary position in the fluid. 

We multiply eq. (27)  by g, and average over real space for the solvent. Then 
rearranging the vector multiplications yields 

We multiply eq. (28)  by Qk a @ / & & ;  apply chain rule to the argument of the 
solvent average; then, average over the internal coordinates of the polymer. 
After some rearrangement, eq. (28)  becomes 

We apply an orthogonal transformation to  the matrix AiJ to  decompose it 
into its normal modes. If we let a k  denote the eigenvalues of ALj, then we have 
the transformation 

The transforming matrix Ah is given by 

where the matrix B L k  is 

The eigenvectors of  the matrix Ai, are 

a-1 

Q h  = C Akj Qj 
j = 1  

Transforming eq. ( 29 ) yields 
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We let 

a@ 
uk=\\Qk-\\ 

dQ k 

1733 

then eq. (31) becomes 

and so 

0-1 

u =  Cuk 
k=l 

Equations (32) present the rheological constitutive equation for this model. 

An Example 

In the development so far, the inter- and intramolecular potentials have 
been arbitrary. These potentials must be specified to make explicit the con- 
sequences of the rheological constitutive equation. As an example, we assume 
Hookean force laws for both the inter- and intramolecular interactions; thus 

Note that dI'/dQ: is just the component of the intermolecular force along Q:.  
A Hookean force law for the intramolecular interaction is a fair approxi- 

mation. This is evident from the success of the Rouse model. The value of the 
Hooke law constant H can be evaluated from measurements of the radius of 
gyration of the macromolecule. A Hookean force law for the intermolecular 
interaction between the solvent and the beads of the macromolecular chain is 
not as good. We can estimate the value of the Hooke law constant L by assuming 
an empirical potential, e.g., a Lennard-Jones potential. 

The value of L can be found by expanding a Lennard-Jones potential in its 
Taylor series about the location of the energy well. Truncating the series after 
the quadratic term and discarding the irrelevant constant term yields the har- 
monic approximation to the potential. Differentiation of the truncated potential 
would then yield a Hookean force law. The estimate of L would then be expressed 
in terms of the energy and length parameters for the Lennard-Jones potential. 
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Upon close examination of the constitutive equation (32b), we see that the 
most important feature concerning the intermolecular potential is not whether 
it yields a linear or nonlinear force, but whether it is isotropic or not. The 
intermolecular force law given by eq. (33b) is isotropic. If we were to assume 
that the solvent-potential interaction occurs in, say, only the flow or velocity 
gradient directions, then very different predictions would result. For the present, 
we use the isotropic potentials of eq. ( 33) .  

Substituting eqs. (33) into eq. (32b) yields 

Equation ( 34) shows the effect of assuming isotropic interaction potentials. 
To see how this couples with the directionality of the flow field, we consider 
homogeneous flow: 

where 6, is the unit 

(35)  

vector in the z direction and is the shear rate. If we also 
consider the flow to be steady, then eq. (34) becomes 

where ( a h ) k  is the xz component of uk and x k  is the x component of &‘. From 
eq. (36) we find 

, a-1 

So we see that, for linear, isotropic potentials in homogeneous flow, the analysis 
predicts a second normal stress difference equal to the negative of the first. 

CONCLUSIONS 

By modeling the interaction between the solvent and the polymer with an 
intermolecular potential based on dispersion forces, this analysis has shown 
that the polymer exerts a force on the solvent equal and opposite to that exerted 
by the solvent on it. The most important feature of the intermolecular potential 
is its symmetry. The directionality of the dispersion forces couples with that 
of the flow to determine the normal stress differences and their relation to the 
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shear stress. The freedom to select any empirically useful intermolecular po- 
tential enables this analysis to predict any normal stress difference desired. 

This analysis can proceed from either the full phase space or the configuration 
space of the polymer. In this article, we worked with the polymer configuration 
space to define the stress within a flow. Alternatively, one could work directly 
with the phase space distributions and define the stress tensor with moments 
over the peculiar velocities. In addition, by not averaging over the velocity 
space portion of the phase space, one would retain the information needed to 
predict the bulk flow velocity directly from the molecular velocities. However, 
working directly with the phase space distributions is more difficult. For the 
purpose of developing a bead-spring model of a macromolecule that perturbs 
the solvent, working with the polymer configuration space is sufficient. 
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